Homomorphisms and Endomorphisms in Varieties of Pseudocomplemented Distributive Lattices (with Applications to Heyting Algebras)
نویسنده
چکیده
According to a result by K. B. Lee, the lattice of varieties of pseudocomplemented distributive lattices is the ui + 1 chain B_i C Bo C Bi C • ■ ■ C Bn C •■ • C Bw in which the first three varieties are formed by trivial, Boolean, and Stone algebras respectively. In the present paper it is shown that any Stone algebra is determined within Bi by its endomorphism monoid, and that there are at most two nonisomorphic algebras in B2 with isomorphic monoids of endomorphisms; the pairs of such algebras are fully characterized both structurally and in terms of their common endomorphism monoid. All varieties containing B3 are shown to be almost universal. In particular, for any infinite cardinal k there are 2K nonisomorphic algebras of cardinality k in B3 with isomorphic endomorphism monoids. The variety of Heyting algebras is also almost universal, and the maximal possible number of nonisomorphic Heyting algebras of any infinite cardinality with isomorphic endomorphism monoids is obtained.
منابع مشابه
Profinite Heyting Algebras and Profinite Completions of Heyting Algebras
This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...
متن کاملJi-distributive Dually Quasi-de Morgan Linear Semi-heyting Algebras
The main purpose of this paper is to axiomatize the join of the variety DPCSHC of dually pseudocomplemented semi-Heyting algebras generated by chains and the variety generated by D2, the De Morgan expansion of the four element Boolean Heyting algebra. Toward this end, we first introduce the variety DQDLNSH of dually quasi-De Morgan linear semi-Heyting algebras defined by the linearity axiom and...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملUnification on Subvarieties of Pseudocomplemented Distributive Lattices
Syntactic unification theory is concerned with the problem of finding a substitution that equalises a finite set of pairs of terms simultaneously. More precisely, given a set of function symbols L and a finite set of pairs of L-terms U = {(t1, s1), . . . , (tm, sm)}, called a unification problem, a unifier for U is a substitution σ defined on the set of variables of the terms in U such that σ(t...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کامل